

FE MODELING OF CARBIDE ASSISTED CYCLIC HARDENING IN BEARING STEELS DURING ROLLING CONTACT FATIGUE

Anup S. Pandkar Nagaraj Arakere Ghatu Subhash

Mechanical & Aerospace Engineering Department University of Florida, Gainesville

May 24th, 2017

Society of Tribology and Lubrication Engineers Annual Meeting 2017 Atlanta, GA

<u>Outline</u>

- Introduction to Rolling Contact Fatigue
- Experimental findings and interpretations (3 ball-on-rod tests)
- Research objective
- FEA modeling technique
- Comparison of results (experimental vs. simulation)
- Conclusions

Rolling Contact Fatigue (RCF)

Mechanical & Aerospace Engineering Department, UF

The Foundation for The Gator Nation

Accelerated Ball-on-Rod RCF Test

M50-NiL bearing steel

- Case hardened steel
- Graded material properties
- Vanadium carbides
- Spherical, uniformly distributed and ~1 μm

Experimental Results

Research Goals

The primary objective of this research is to understand the cause of such increase in hardness over millions of RCF cycles i.e. *cyclic hardening*.

In doing so we would also learn,

- The response of bearing steels to the RCF loads
- Role of microstructure towards RCF failures
- Account for material plasticity
- Determination of cyclically evolving stress-strain fields

Finite Element Model of RCF Test

Mechanical & Aerospace Engineering Department, UF

40 hrs./rev of rod

i.e. 6 RCF cycles

Finite Element Model of RCF Test

Orthogonal Shear Stress Cycle

Global model (without carbides)

Foundation for The Gator Na

Submodel (with Carbides)

Ratcheting Near Carbide Particle

Submodel (with carbide)

Global model (without carbide)

A.S. Pandkar, N. Arakere, G. Subhash, "Microstructure-sensitive accumulation of plastic strain due to ratcheting in bearing steels subject to Rolling Contact Fatigue", International Journal of Fatigue, 63 (2014) 191-202.v

<u>Indent ⇔ Submodel</u>

Foundation for The Gator Na

Variation of Cyclic Hardening Near Carbide

Mechanical & Aerospace Engineering Department, UF

The Foundation for The Gator Nation

Average Cyclic Hardening over an indent

Discrepancy at 75 µm depth can be attributed to:

- Edge effects (indent is closest to the surface)
- Cyclic hardening is governed by max. VM stress that occurs at 150 µm
- 2D plain strain model instead of 3D model

Conclusions

- 1. Carbide particles \rightarrow Shear stress cycle with non-zero mean stress
- 2. Stress-controlled loading + Non-zero mean stress \rightarrow Ratchetting
- 3. Ratcheting \rightarrow Cyclic hardening during RCF

Publications

- **1. A.S. Pandkar, N. Arakere, G. Subhash**, "Microstructure-sensitive accumulation of plastic strain due to ratcheting in bearing steels subject to Rolling Contact Fatigue", **International Journal of Fatigue**, 63 (2014) 191-202.v
- **2. A.S. Pandkar, N. Arakere, G. Subhash**, "Ratcheting-based microstructure-sensitive modeling of the cyclic hardening response of case-hardened bearing steels subject to Rolling Contact Fatigue", **International Journal of Fatigue**, 73 (2014) 119-131.

Author Contact

Dr. Anup Pandkar Email: <u>apandkar@ufl.edu</u> LinkedIn: <u>https://www.linkedin.com/in/anuppandkar</u>

