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Outline

• Introduction to Rolling Contact Fatigue
• Experimental findings and interpretations (3 ball-on-rod tests)
• Research objective
• FEA modeling technique 
• Comparison of results (experimental vs. simulation)
• Conclusions
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Accelerated Ball-on-Rod RCF Test
Surface
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Ref: Hamrock B. & Dowson D. (1981)

M50-NiL bearing steel

• Case hardened steel
• Graded material properties
• Vanadium carbides
• Spherical, uniformly 

distributed and ~1 μm

Ref: Klecka M.(2011)

Max. Hertz stress can be controlled
Radial load 8600 RCF cycles/min

Si3N4 balls

M50-NiL rod
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Experimental Results
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Research Goals

In doing so we would also learn, 
- The response of bearing steels to the RCF loads
- Role of microstructure towards RCF failures
- Account for material plasticity
- Determination of cyclically evolving stress-strain fields

The primary objective of this research is to understand the cause of such 
increase in hardness over millions of RCF cycles i.e. cyclic hardening.
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Finite Element Model of RCF Test

M50-NiL rod

Si3N4 ball

Radial load Model accounts for:
• Continuously changing contact 
• Cyclic plasticity
• Graded material properties
• Localized & Multiaxial stresses

40 hrs./rev of rod

Computationally expensive

2 revolutions are simulated
i.e. 6 RCF cycles

Global model
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Finite Element Model of RCF Test

M50-NiL rod

Si3N4 ball

Radial load Ball

Rod

Global model
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Orthogonal Shear Stress Cycle

Global model (without carbides) Submodel (with Carbides)

Carbides (or any other form of heterogeneity)

Alter shear stress cycle

Non-zero mean shear stress



10Mechanical & Aerospace Engineering Department, UF

Ratcheting Near Carbide Particle

Global model does not cyclically 
accumulate plastic strain 

Elastic shakedown

Global model  (without carbide) Submodel (with carbide)

The stress concentration and non-zero 
mean stress promote continuous plastic 

strain accumulation 
Ratcheting mechanism

A.S. Pandkar, N. Arakere, G. Subhash, “Microstructure-sensitive accumulation of plastic strain due to ratcheting in bearing steels 
subject to Rolling Contact Fatigue”, International Journal of Fatigue, 63 (2014) 191-202.v
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Ratcheting  Cyclic hardening

Plastic strain
accumulation

Material hardening 
(Increase in yield stress)

Continuous
Plastic strain accumulation 

(Ratcheting)

Continuous
Yield stress increase
(Cyclic hardening)

localized ratcheting  cyclic hardening

Monotonic loading

Cyclic loading

Ref: Stephens et al.(2000)
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Variation of Cyclic Hardening Near Carbide

(𝝈𝑽𝑴)𝒎𝒂𝒙 = 𝟑𝟎𝟕𝟏𝑴𝑷𝒂 (𝝈𝑽𝑴)𝒎𝒂𝒙 = 𝟑𝟏𝟖𝟏𝑴𝑷𝒂

(𝝈𝑽𝑴)𝒎𝒂𝒙 = 𝟐𝟗𝟗𝟎𝑴𝑷𝒂

(𝝈𝑽𝑴)𝒎𝒂𝒙 = 𝟑𝟐𝟑𝟖𝑴𝑷𝒂
ELEMENT 2(𝝈𝑽𝑴)𝒎𝒂𝒙 = 𝟑𝟐𝟕𝟑𝑴𝑷𝒂(𝝈𝑽𝑴)𝒎𝒂𝒙 = 𝟑𝟏𝟕𝟎𝑴𝑷𝒂

(𝝈𝑽𝑴)𝒎𝒂𝒙 = 𝟐𝟖𝟕𝟔𝑴𝑷𝒂

(𝝈𝑽𝑴)𝒎𝒂𝒙 = 𝟑𝟐𝟑𝟏𝑴𝑷𝒂
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Average Cyclic Hardening over an indent
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Discrepancy at 75 μm depth can be attributed to:
- Edge effects (indent is closest to the surface)
- Cyclic hardening is governed by max. VM stress that occurs at 150 μm
- 2D plain strain model instead of 3D model 
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Conclusions
1. Carbide particles  Shear stress cycle with non-zero mean stress
2. Stress-controlled loading + Non-zero mean stress  Ratchetting
3. Ratcheting  Cyclic hardening during RCF

2. A.S. Pandkar, N. Arakere, G. Subhash, “Ratcheting-based microstructure-sensitive
modeling of the cyclic hardening response of case-hardened bearing steels subject to
Rolling Contact Fatigue”, International Journal of Fatigue, 73 (2014) 119-131.
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